Saturday, 23 April 2016

Silicon-Controlled Rectifier (SCR)

The Silicon-Controlled Rectifier (SCR) :

If an SCR's gate is left floating (disconnected), it behaves exactly as a Shockley diode. It may be latched by break-over voltage or by exceeding the critical rate of voltage rise between anode and cathode, just as with the Shockley diode. Dropout is accomplished by reducing current until one or both internal transistors fall into cutoff mode, also like the Shockley diode. However, because the gate terminal connects directly to the base of the lower transistor, it may be used as an alternative means to latch the SCR. By applying a small voltage between gate and cathode, the lower transistor will be forced on by the resulting base current, which will cause the upper transistor to conduct, which then supplies the lower transistor's base with current so that it no longer needs to be activated by a gate voltage. The necessary gate current to initiate latch-up, of course, will be much lower than the current through the SCR from cathode to anode, so the SCR does achieve a measure of amplification.

This method of securing SCR conduction is called triggering, and it is by far the most common way that SCRs are latched in actual practice. In fact, SCRs are usually chosen so that their breakover voltage is far beyond the greatest voltage expected to be experienced from the power source, so that it can be turned on only by an intentional voltage pulse applied to the gate.

It should be mentioned that SCRs may sometimes be turned off by directly shorting their gate and cathode terminals together, or by "reverse-triggering" the gate with a negative voltage (in reference to the cathode), so that the lower transistor is forced into cutoff. I say this is "sometimes" possible because it involves shunting all of the upper transistor's  collector current past the lower transistor's base. This current may be substantial, making triggered shut-off of an SCR difficult at best. A variation of the SCR, called a Gate-Turn-Off thyristor, or GTO, makes this task easier. But even with a GTO, the gate current required to turn it off may be as much as 20% of the anode (load) current! The schematic symbol for a GTO is shown in the following illustration: (Figure below)

Article by
St.Mary's Group
EEE Dept.

No comments:

Post a Comment